
Vol.:(0123456789)1 3

Environmental Modeling & Assessment 
https://doi.org/10.1007/s10666-022-09820-x

Sustainable Groundwater Management in a Two‑Cell Aquifer Model

Emmanuelle Augeraud‑Veron1 · Jean‑Christophe Pereau1 

Received: 26 June 2021 / Accepted: 28 January 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
The design of optimal water policies between farmers, municipalities, and groundwater-dependent ecosystems is analyzed 
in a hydro-economic model with physical interactions between a confined aquifer and a shallow aquifer having a natural 
drainage. Based on the Pecos Basin case study, we analyze the optimal trajectories of the water tables and water allocation 
between users and environment flows for the ecosystems. We also explore the consequences for the ecosystem when the 
water agency uses a one-cell model thinking that it is a correct approximation of the two-cell model. Our results show the 
importance to consider hydraulic conductivities for the preservation of groundwater-dependent ecosystems.
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1  Introduction

Aquifers constitute a large stock of freshwater. They are crit-
ical for human water supply but also for groundwater drain-
age to their natural outlets, such as rivers, lakes, wetlands, 
and dependent ecosystems [1–4]. While climatic change may 
threaten aquifer recharge [5, 6], increased domestic water 
use with urbanization, the expansion of irrigated agricul-
ture, or the new industrial demand for energy production 
are actually leading to higher rate of water pumping [7]. 
For aquifers in interaction with such surface-water bodies, 
groundwater extraction may entail a decrease in natural 
drainage and then threaten environmental flows [8]. Deter-
mining the conditions of water resources allocation between 
economic sectors and environmental flows for the depend-
ent ecosystems is a main challenge to ensure a sustainable 
management of groundwater [9]. Our definition of ground-
water sustainability consists in maintaining the aquifer for 
an infinite time without causing unacceptable hydrologic, 
environmental, and socio-economic consequences [10]. In 

particular, groundwater pumping has to conserve discharge 
for the environment needs [11]. This paper aims at defining 
what could be such a sustainable management in a multi-use 
and multi-cell hydro-economic model.

Groundwater management models have been consid-
ered under different kind of externalities [12–15]. The 
design of water policies has been analyzed for the agricul-
tural sector with one crop [16–18] or two crops [19], for 
the urban sector [20] or for both irrigated agriculture and 
urban sector [21–23]. Part of this economic literature has 
been analyzed using the “bathtub” or “milk carton” model 
consisting in a single-cell aquifer with natural recharge as 
input and natural drainage and pumping as outputs [18]. 
To deal with conflicting water extraction between two 
types of users and the preservation of the groundwater-
dependent ecosystems, a more complex hydro-economic 
model has to be considered. For that purpose, we develop 
a two-cell aquifer model with a confined aquifer and a 
shallow aquifer which has a natural drainage to a depend-
ent ecosystem. Such a configuration refers to the initial 
modelling of the Roswell groundwater basin and the Pecos 
River by [24] for which data are available. It is worth to 
mention that most of the economic literature after [18] 
used the one-cell aquifer version, often without natural 
drainage, under the label of Pecos Basin and not the orig-
inal model. This is not without raising many questions 
concerning the hydraulic coherence of the system and the 
consequences on the design of water policies. We thus 
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develop a more general than [24] and consider a stylized 
multi-use and multi-cell hydro-economic model with two 
groups of users, municipalities and farmers, having their 
own demand function. Urban water use is extracted from 
the confined aquifer while water dedicated to agriculture is 
pumped from the shallow aquifer. Modelling such interac-
tions is important for the design of water pumping policies 
which consider that groundwater and surface water are not 
separate resources and are functionally interdependent by 
their hydraulic connection.

The hydrological literature on the conjunctive use of sur-
face and groundwater at a basin scale exists but is scarce. 
Some economic models have considered several connected 
bathtub aquifers, several sources of water between surface 
water, rainwater, and aquifer water [25–29]. These models 
often focus on irrigated agriculture with farmers maximizing 
their payoffs. In terms of hydro-economic modelling [24], 
consider a confined aquifer which is located below an uncon-
fined aquifer with vertical flows governed by Darcy’s law 
implying that water flows upward due to the water pressure. 
They also assume that the confined aquifer has a uncon-
fined part with a natural recharge distinct from the shal-
low or unconfined aquifer. It differs from the literature on 
multi-cell models assuming water flow exchanges between 
lateral and not vertical aquifers as in [30–32]. [30] consider 
a model of several interconnected cells but water flows is 
limited to between adjacent cells with one user on each 
cell while [31, 32] consider two adjacent cells. Even with 
lateral connections, water flows between the two cells are 
proportional to the difference in stock levels and thus are 
governed the Darcy’s law. By contrast, [33] also consider 
a system of confined and unconfined aquifer but assume 
perfect transmissivity between the two aquifers. [34] isolate 
the water pressure externality in the particular case of an 
artesian aquifer which is a confined aquifer that recharges 
from a more elevated unconfined aquifer without any pump-
ing cost externalities. They also assume perfect transmis-
sivity between the recharge area and the confined aquifer. 
However, the modelling approach of [24] do not take into 
account spatial externalities as in [35] which consider that 
pumping can induce cones of depression around individual 
wells based on Theis’s argument [36]. It implies that when 
users or wells are closed together, the overlap of depression 
cones may reinforce the pumping externality. [37] considers 
the issue of saline intrusion in a hydrological system with 
spatial externalities in which the confined aquifer recharges 
water from the unconfined aquifer and discharges into the 
sea. [37] shows that the seawater externality may exceed the 
pumping cost externality near the coast. [38, 39] investigated 
more complex models with real-world cases but they have 
not been extended in the economic literature.

This article aims at developing an intermediate styl-
ized model of a synthetic basin dealing with economic, 

hydraulic, and ecological interactions between users, 
between aquifers, and between aquifer and a river which 
determine the amount of environmental flows for the eco-
system. When natural drainage sustains environmental 
flows for a river, the decrease in the water table reduces the 
natural drainage and creates damages to the ecosystems 
[14, 40]. It becomes critical for ecological safety that the 
water table of the shallow aquifer remains above a critical 
level to ensure that water flows from aquifers to the river 
[41–43]. When the flow is in the opposite direction, the 
aquifer is fed by the river and it may have disastrous envi-
ronmental consequences in terms of biodiversity losses 
for instance. The existence of these environmental flows 
is of importance for a water agency aiming at maximizing 
a welfare function, defined as the sum of the net benefits 
of all the agents plus the ecosystem damages, and then 
internalizing both the pumping cost and the environmental 
externalities.

Our contribution to the literature in terms of groundwater 
management concerns the choice for a water agency of using 
the one-cell instead of the two-cells model to determine his 
optimal policies. If conditions ensuring that the two models 
are not equivalent from a hydrological point of view, then 
it is important to analyze the consequences for the water 
agency to use, as an approximation of the initial two-cell 
model, a one-cell model as if it was the correct model. In 
this case, it is important to see whether the water agency 
can maintain positive environmental flows and preserve the 
ecosystem. We know that such an objective requires to deter-
mine how much the society has to value in monetary terms 
the ecosystem services, sustained by groundwater flows, to 
preserve them [44–46]. Hence, the value of the marginal 
ecosystem damage which determines the weight of the envi-
ronmental externalities may differ according the hydraulic 
models, meaning that the water agency has to allocate dif-
ferently water pumping between farmers, municipalities, and 
the ecosystem.

Section 2 presents the aquifer model by distinguishing the 
one-cell model with the two-cell model and the equivalence 
conditions between them. Section 3 analyzes in a dynamic 
game how a water agency maximizes a welfare function 
including ecosystem damages due to aquifer depletion. Sec-
tion 4 illustrates our results based on the hydraulic system 
of the Pecos Basin. Section 5 concludes. All the proofs are 
given in the Appendix.

2 � Groundwater Model

This section presents the hydraulic components of the model 
and in particular the equivalence conditions between the 
one-cell and two-cell models are analyzed.
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2.1 � From One‑Cell To Two‑Cell Aquifers

Time is indexed by t ∈ ℝ
+ . The continuous time hydrologi-

cal dynamics is presented for both one-cell and two-cell 
models. When a two-cell hydrological model is considered, 
the dynamics of an aquifer k ( k = 1, 2) describes changes in 
the water table, measured by hk ∈ [0, hmax

k
] where hmax

k
 stands 

for the maximum level of the water table. We also introduced 
a minimum value for the water table hmin

k
 due to the presence 

of natural drainage Wf  consisting in environmental water 
flows for river, lakes, or groundwater-dependent ecosystems. 
When only one aquifer is considered (Fig. 1), subscript k is 
omitted. When two aquifers are considered (Fig. 2), h1 is the 
water table of the confined aquifer and h2 the water table of 
the shallow aquifer. Water tables increase with the constant 
natural recharge Rk > 0 and decrease with water pumping 

and the natural drainage. The hydraulic connection between 
the two aquifers is given by the flow D1→2 . As explained in 
the introduction, these one-cell and two-cell models are 
based on the hydraulic features of the Pecos Basin by [18, 
24]. We only depart from these models by considering water 
extraction Wa and Vm dedicated to irrigated agriculture for na 
identical farmers and to water consumption for nm identical 
municipalities. Then, Wa =

∑na
i=1

wi where wi stands for the 
individual water extraction of farmer i ∈ [1, .., na] and 
Vm =

∑nm
j=1

vj where vj stands for the individual water extrac-
tion of municipalities j ∈ [1, .., nm] . A proportion �i with 
i ∈ {a,m} of the water is assumed to return to the aquifer or 
in each aquifer where 0 < 𝜇i < 1 stands for the return flow 
coefficient. Ak is the area of aquifer k and Sk the storativity 
coefficient.

Based on Fig. 1, the dynamics of the one-cell aquifer is

where ḣ stands for d
dt
(h(t)) . According to [47], the natural 

drainage describing the stream-aquifer flow is based on a lin-
ear conductance model. This assumption is mainly accepted 
in the literature [48, 49]. We have

We assume that in the pristine initial conditions before 
pumping starts, natural discharge is equal to the natural 
recharge R = Wf  . Under this condition, the conductance and 
constant coefficient kf  can be rewritten as follows 
kf =

R

hmax−hmin

> 0 . Equation (2) shows that for h ≥ hmin water 
flows from the aquifer to the river but for h < hmin the aquifer 
is fed by the river. Such a case may have disastrous environ-
mental consequences in terms of biodiversity losses and is 
in contradiction with our definition of sustainability. This 
critical water table hmin can be interpreted as a tipping point 
in this hydrological system. We assume that in this configu-
ration the river does not become completely dry, implying 
no regime shift (see [50, 51] for examples of regime shifts). 
In the one-cell model, water extractions for farmers and 
municipalities are perfectly substitutes and impact sym-
metrically the natural drainage.

From Eqs. (1) and (2), the dynamics can be rewritten as

with the following notations

(1)ASḣ = R −
(
1 − 𝜇a

)
Wa −

(
1 − 𝜇m

)
Vm −Wf .

(2)Wf = kf
(
h − hmin

)
.

(3)ḣ = r − yaWa − ymVm − eh,

(4)
r =

R + kf hmin

AS
> 0, ya =

1 − 𝜇a

AS
> 0,

ym =
1 − 𝜇m

AS
> 0, e =

kf

AS
> 0.

Recharge

Natural Drainage

PumpingR
(1- µa)·Wa

h(t)
Level

A, S

Wf = kf ( h(t) - hmin )

(1- µm)·Vm

Fig. 1   One-cell aquifer model with two uses, one recharge and a natu-
ral drainage

R1

(1- µa)·Wa

h1(t)
A2 , S2

D = k1,2 ( h1(t) - h2 (t))

A1, S1

Wn = kn ( h2(t) - h2       )
min

h2(t)

R2

(1- µm)·Vm

E

Fig. 2   Two-cell aquifer model with two uses, two recharges and a 
natural drainage
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In the two-cell model, we assume that the municipali-
ties extract water from the confined aquifer h1 while extrac-
tion dedicated to irrigated agriculture is from the shallow 
aquifer h2 . We also consider that the natural drainage, now 
denoted by Wn , is from the shallow aquifer. It implies that 
water extraction by farmers in the shallow aquifer impacts 
directly the natural drainage while the impact of water 
extraction in the confined aquifer is indirect through the 
hydraulic connection between the two cells. E measures 
the evaporation by phreatophytes in the dynamics of the 
shallow aquifer1. The dynamics is given by

The flow D1→2 between the two aquifers obeys Darcy’s 
Law where k12 > 0 is the leakage proportionality coefficient

The flow Wn from the shallow aquifer to the river is deter-
mined by

As in the one-cell model, we assume that in the pristine 
initial conditions before pumping starts, natural discharge is 
equal to the natural recharge R1 + R2 − E = Wn , implying 
kn =

R1+R2−E

hmax

2
−hmin

2

> 0 . From Eqs. 5, 6, and 7, the hydraulic sys-
tem can be rewritten as

with

2.2 � Equivalence Between the One‑Cell and Two‑Cell 
Aquifers

Due to its larger size and the interactions involved, the two-
cell model is more cumbersome to analyze than the one-cell 
model. Taking into account the complexity of the two-cell 

(5)
{

A1S1ḣ1 = R1 −
(
1 − 𝜇m

)
Vm − D1→2,

A2S2ḣ2 = R2 − E −
(
1 − 𝜇a

)
Wa + D1→2 −Wn.

(6)D1→2 = k12
(
h1 − h2

)
.

(7)Wn = kn(h2 − hmin

2
).

(8)
{

ḣ1 = r1 − y1Vm − e0h1 + e0h2,

ḣ2 = r2 − y2Wa + e1h1 − e2h2,

(9)

r1 =
R1

A1S1
> 0; r2 =

R2 − E + knh
min

2

A2S2
> 0; y1 =

1 − 𝜇m

A1S1
> 0;

y2 =
1 − 𝜇a

A2S2
> 0, e0 =

k12

A1S1
> 0; e1 =

k12

A2S2
> 0;

e2 =

(
k12 + kn

)
A2S2

> 0.

model will therefore only be of interest if the trajectories of 
the two models are significantly different. For that purpose, 
we aim at looking to which extend the one-cell model can 
be a good approximation of the two-cell one, meaning that, 
for given water extractions Wa and Vm , trajectories of the 
two systems are very close. Three distinct situations in the 
two-cell model have been identified depending on the val-
ues of specific coefficients which ensure that the two-cell 
model behave as a one-cell one. Results are presented in 
Propositions 1–3. Proofs given in the Appendix are based on 
properties of perturbation theory [52, 53]. The three identi-
fied cases are (i) the natural drainage can be considered as 
negligible, (ii) the storage capacity of one aquifer (i.e., the 
product of the area of the aquifer and the storativity coef-
ficient, AS) is small with respect to the other aquifer, and 
(iii) leakage rate k12 is large.

In Proposition 1, we consider natural drainage parameter 
is negligible. To do so, we introduce a parameter � on the 
natural drainage parameter. We then analyze what happens 
when coefficient � tends towards zero. The model appears 
to be a regular perturbation of a simpler dynamical system. 
When the natural drainage is small, it means that whatever 
the level of groundwater table, there are few impact on the 
ecosystem in both the one-cell and two-cell models. Prop-
osition 1 then proves that in that case, trajectories of the 
two-cell model are indistinguishable from the ones obtained 
in a one-cell model, in which the water table height is the 
weighted mean of the water table in each cell and where the 
recharge is the total recharge that impacts the whole ground-
water. Formally, Proposition 1 is given as follows.

Proposition 1  Assume kn = ��n with 0 < 𝜀 ≪ 1 , which 
means that the natural drainage is negligible. Let h be 
defined as h =

A1S1h1+A2S2h2

AS
 with AS = A1S1 + A2S2 and 

R = R1 + R2 − E . Then, the dynamics of the mean water 
table h obtained from the two-cell dynamics given by system 
(5) with coefficients ya and ym defined in Eq. (4) is

It is a regular perturbation, for which solutions are close 
to the reduced dynamical system

which corresponds to the dynamics of a one-cell aquifer.

Equation (11) is called the dynamics of the reduced 
model obtained when � tends toward zero. Figure 3 illus-
trates the discrepancy between the two dynamics obtained 
for the reduced model and for the two-cell model in terms 
of water table and in volume, when the difference of the 

(10)ḣ =
R

AS
− ymVm − yaWa − 𝜀𝜅n(h2 − hmin

2
).

(11)ḣ =
R

AS
− ymVm − yaWa,

1  In the one-cell model, this term is implicitly removed from the nat-
ural recharge.
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water table is multiplied by the water storage capacity of 
the aquifer. We consider two values for parameter kn with 
kn = 0.1 and kn = 2.8783 which corresponds to the true 
value for the Pecos Basin (see Tables 1 and 2 in Subsec-
tion 4.1). We also consider constant extraction water with 
Vm = 268, 64 Mm3 and Wa = 262, 89 Mm3 . Figure 3a shows 
that the smaller kn , the closest the trajectories of the one-
cell model to those of the two-cell model. Moreover, the 
discrepancy increases with kn . For kn = 2.8783 , the differ-
ence is about 0.5 m in terms of water table but at the scale 
of the aquifer in volume (multiplied by the term AS), the 
discrepancy becomes important as shown in Fig. 3b.

Now singular perturbation tools are considered by intro-
ducing a coefficient � on the water table of the confined 
aquifer which is a state variable of the system. We assume 
the storage capacity of the confined aquifer, A1S1 , is very 
small compared to the shallow one, A2S2 . In that case, the 
dynamics of the two-cell model can be rewritten as a two-
time scale dynamics. Using Tikhonov’s theorem [52], it 
can then be shown that the trajectory quickly converges 
to a manifold (called the slow manifold and denoted L), 
and then the dynamics on the slow manifold is the one of 
a one-cell model. It gives Proposition 2:

Proposition 2  Let us assume that A1S1 is small compared to 
A2S2 , such that A1S1 = �A2S2 where 0 < 𝜀 ≪ 1 . Then, the 
dynamics of the two-cell aquifer is given as follows.

For t large enough, the water table of the confined aquifer 
satisfies

where the dynamics of the non-confined aquifer can be 
approximated by the reduced model which is a one-cell 
aquifer dynamics, namely:

Corollary 1 gives the formal formulation of Proposi-
tion 2.

Corollary 1  Let us assume that A1S1 is small compared to 
A2S2 , such that A1S1 = �A2S2 where 0 < 𝜀 ≪ 1 . Then, the 
dynamics of the two-cell aquifer is a two-time scale dynam-
ics where t is the slow-time. Slow time t dynamics is given 
by system (12).

At fast time � defined as t = �� , the dynamics quickly con-
verges in the neighborhood of the attractive slow manifold, 
defined as

(12)

{
𝜀A2S2ḣ1 = R1 −

(
1 − 𝜇m

)
Vm − k12

(
h1 − h2

)
,

A2S2ḣ2 = R2 − E −
(
1 − 𝜇a

)
Wa + k12

(
h1 − h2

)
− kn(h2 − hmin

2
).

(13)h1(t) =
R1 −

(
1 − �m

)
Vm + k12h2(t)

k12
,

(14)
A2S2ḣ2 = R1 + R2 − E −

(
1 − 𝜇a

)
Wa −

(
1 − 𝜇m

)
Vm − kn(h2 − hmin

2
).
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where the slow motion takes place satisfying Eq. (14).

Figure 4a illustrates the phase diagram of the singu-
lar dynamics of the two equations of system (12). The 
phase diagram shows that the faster the convergence to 
the slow manifold, given by the solid line (in red) and by 
Eq. (13), the lower A1S1 is or equivalently � . It also can be 
shown that the convergence to the slow manifold is very 
quick. Figure 4b shows the trajectory of the water table of 
the shallow aquifer h2 for different values of A1S1 of the 
confined aquifer. As proved in Proposition 2, the smaller 
A1S1 , the closer the trajectories to the one obtained in the 
reduced model given by Eq. (14). We consider two differ-
ent values of A1S1 with A1S1 = 25 and A1S1 = 101 which 
is the true value of our case study the Pecos Basin. While 
A1S1 = 101 corresponds to 22.6% of the value A2S2 for the 
non-confined aquifer, the lower value A1S1 = 25 is equal 
to 5.6% of the value A2S2 for the non-confined aquifer. 
Figure 4b shows that for A1S1 = 101 the one-cell dynamics 
cannot be used as an approximation of the two-cell model 
given by Eq. (12). However for a lower value of A1S1 in 
terms of A2S2 , the paths of the water tables of the one-cell 
aquifer and the two-cell aquifer are very close over the 
simulation period.

Here again, a singular perturbation theory is used to 
study the dynamics of the two-cell aquifer when we con-
sider the leakage coefficient k12 between the two aquifers. 

L =

{
(h1, h2) ∈ ℝ

2+ ∣ h1 =
R1 −

(
1 − �m

)
Vm + k12h2

k12

}
,

Proposition 3 shows how the trajectories of the two-cell 
model can be approximated by solutions of a one-cell 
model for large leakage coefficients.

Proposition 3  Let � =
1

k12
 . Then for t large enough, the water 

tables of the confined and non-confined aquifer are close, 
namely:

and the dynamics of the two-cell aquifer is close to the 
dynamics of the following one-cell aquifer

with AS = A1S1 + A2S2 , R = R1 + R2 − E , where h stands 
for h1 or h2.

The formal expression of the dynamics using Tik-
honov’s theorem is expressed in Corollary 2.

Corollary 2  Let � =
1

k12
 . Then, System (5) can be rewritten as 

the following slow-fast dynamical system.

Let us consider initial conditions 
(
h0, h2(0)

)
 . At fast time 

� defined as t = �� , the dynamics quickly converges in the 
neighborhood of the attractive slow manifold, defined as

h1(t) = h2(t),

(15)ASḣ = R −
(
1 − 𝜇a

)
Wa −

(
1 − 𝜇m

)
Vm − kf (h − hmin

2
),

(16)

⎧⎪⎨⎪⎩

AS
dh

dt
= R

1
−
�
1 − �

m

�
V
m
+ R

2
− E −

�
1 − �

a

�
W

a
− k

f
(h

2
− h

min

2
),

�A
2
S
2

dh2

dt
= �R

2
− E − �

�
1 − �

a

�
W

a
+

AS

A1S1

(h − h
2
) − �k

f
(h

2
− h

min

2
).
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where the slow motion takes place satisfies

with AS = A1S1 + A2S2 , R = R1 + R2 − E.

Equation 17 is called the equation of the reduced model. 
Fig. 5a illustrates this singular dynamics for two different 
values of the leakage coefficient, k12 = 33.395 which is 
the true value of the Pecos Basin and a new larger value 
k12 = 100 . The phase diagram shows that the larger k12 , the 
faster the convergence to the slow manifold (solid line (red) 
of Fig. 5a). Fig. 5b shows that the larger k12 , the closer the 
trajectories are to the ones of the one-cell model.

3 � Groundwater Management

We assume that there exists a water agency aiming at maxi-
mizing a welfare function defined as the sum of the benefits 
of the farmers and municipalities and an ecosystem damage 
due to aquifer depletion under the constraint given by the 
aquifer dynamics. We first describe the behavior of farmers 
and municipalities and the environmental externalities and 
derive the social optimum achieved by the water agency.

3.1 � Farmers and Municipalities

As in [18], water demand functions are a linear func-
tion of the price pw and differ between the farmers and 

M =
{
(h1, h2) ∈ ℝ

2+ ∣ h2 = h
}
,

(17)ASḣ = R −
(
1 − 𝜇a

)
Wa −

(
1 − 𝜇m

)
Vm − kf (h − hmin

2
),

municipalities. Wa being the total demand for farmers and 
Vm being the water demand for municipalities, we have

with gi > 0 and ki > 0, for i ∈ {a,m}.
The benefit of a farmer i becomes

In a similar way, the benefit of a municipality j is

The marginal cost of pumping depends on the level of 
the water table such that for i ∈ {a,m}

It shows that the marginal cost of pumping increases 
with the intercept of the pumping cost function ci

0
 which 

gives the maximum average cost of extraction and 
decreases with the slope of the pumping cost function c1 
which depends on the water table. We can define hmax

k
 as 

the maximum water table elevation associated with the 
natural hydrologic equilibrium of the aquifer that occurs 
when groundwater reserves reach the storage capacity 
of the aquifer. Hence for that value of the water table 
hk = hmax

k
 , the marginal cost of pumping is zero. Then 

from Eq. (21), condition Ci(hk) = 0 implies hmax
k

= ci
0
∕ci

1
 

(18)
{

Wa = ga − lapw,

Vm = gm − lmpw,

(19)∫
wi

0

[
ga

la
−

na

la
w

]
dw =

ga

la
wi −

na(wi)
2

2la
.

(20)∫
vj

0

[
gm

lm
−

nm

lm
v

]
dv =

gm

lm
vj −

nm(vj)
2

2lm
.

(21)Ci

(
hk
)
= ci

0
− ci

1
hk.
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[54]. These coefficients can differ between the municipali-
ties and the farmers in the two-cell model since water is 
extracted from different aquifers. However in the one-cell 
model, we assume that they are equal ci

1
= c1 since we 

assume that both users face the same hydrogeological con-
ditions. In that case, cost heterogeneity can be introduced 
in the fixed cost due to different delivery charges [20].

In the one-cell model, the benefits derived for a farmer i 
from pumping a water quantity wi and a municipality j from 
pumping an amount vj are given by

with

We obtain similar expressions in the two-cell model. The 
payoff functions for a farmer i pumping an amount wi in the 
shallow aquifer and for a municipality j pumping an amount 
vj in the confined aquifer are

with the new coefficients

3.2 � The Ecosystem Damages

According to [40], the ecosystem damages function due to 
the depletion of the aquifer is assumed to take the following 
form

The first term of Eq. (25) consists in the cost of the aqui-
fer depletion measured by the capture variable defined by 
[55] as the decrease in drainage plus the increase in recharge 
(not considered here since R is constant). This is of interest 
for damage to ecosystems associated with consumptive uses 
(river base flow, transpiration by phreatophytes). Coefficient 
𝜑 > 0 measures the cost of damages to the ecosystem for 
each cubic meter of depletion. The second term of Eq. 25 
refers to another kind of damage cost related to the difference 
between the maximum (initial) and the current water levels 
as in [56]. It is mostly relevant for nonconsumptive uses of 
groundwater (for example, to avoid subsidence). Coefficient 
𝜁 > 0 is also a measure of the cost of damages to the eco-
system for each meter of depletion (or height of water level 
drop). Using Eqs. (2) and (25) can be rewritten as follows:

(22)
{

�a
i

= bwi + dw2

i
+ c1wih,

�m
j

= �vj + �v2
j
+ c1vjh,

(23)

b =
ga

la
− ca

0
< 0, 𝛽 =

gm

lm
− cm

0
< 0, d = −

na

2la
< 0, 𝛿 = −

nm

2lm
< 0.

{
�a
i

= bwi + dw2

i
+ fwih2,

�m
j

= �vj + �v2
j
+ �vjh1,

(24)f = ca
1
> 0, 𝛾 = cm

1
> 0.

(25)D(h) = �
(
R −Wf

)
+ �(hmax − h).

with d0 = 𝜑
(
R + kf hmin

)
+ 𝜁hmax > 0 and d1 = kf𝜑 + 𝜁 > 0.

In the two-cell aquifer, the ecosystem damage is given by

which can be rewritten as

w i t h  d2 = 𝜑
(
R1 + R2 − E + kf h

min

2

)
+ 𝜁hmax

2
> 0  a n d 

d3 = kf𝜑 + 𝜁 > 0.

3.3 � The Social Optimum

In the configuration of one aquifer and two uses, the water 
agency aims at maximizing the sum of the benefits of the 
na identical farmers and the nm identical municipalities and 
also taking into account the environmental damage given 
by Eq. (26)2.

The program of the water agency can be written as

To ensure an interior solution, we introduce the following 
assumptions

Assumption A1a ∶ r −
(blaya+𝛽lmym)(𝜌+e)
𝜌+e+c1(laya+lmym)

−
c
1
lalm(ya−ym)(bym−𝛽ya)
𝜌+e+c1(laya+lmym)

> 0.

Assumption A1b ∶ e +
c1(laya+lmym)(𝜌+e)
𝜌+e+c1(laya+lmym)

−
c2
1
lalm(ya−ym)

2

𝜌+e+c1(laya+lmym)
> 0.

Proposition 4  Under Assumptions A1a and A1b, the water 
table dynamics for the social optimum is given by

where hSO is given by

and the eigenvalue with negative real part given by

(26)D(h) = d0 − d1h,

D(h2) = �
(
R1 + R2 − E −Wf

)
+ �

(
hmax

2
− h2

)
,

(27)D(h2) = d2 − d3h2,

(28)

max
w≥0,v≥0�

∞

0

e−𝜌t
(
na
(
bw + dw2 + c1wh

)
+ nm

(
𝛽v + 𝛿v2 + c1vh

)
− d0 + d1h

)
dt,

s.t.ḣ =r − eh − yanaw − ymnmv,

h(0) =h0, h ≥ 0.

(29)h(t) = e�SOt
(
h0 − hSO

)
+ hSO,

(30)

hSO =

r −
(blaya+𝛽lmym)(𝜌+e)
𝜌+e+c1(laya+lmym)

+ d
1

lay
2

a
+lmy

2

m

𝜌+e+c1(laya+lmym)
−

c1 la lm(ya−ym)(bym−𝛽ya)
𝜌+e+c1(laya+lmym)

e +
c1(laya+lmym)(𝜌+e)
𝜌+e+c1(laya+lmym)

−
c2
1
la lm(ya−ym)

2

𝜌+e+c1(laya+lmym)

> 0,

2  The social optimum can be implemented with market-based instru-
ments as water market between municipalities and farmers in two 
connected aquifers. Such market-based instruments have already been 
analyzed between two groups of farmers [19] or between one group 
of heterogenous farmers [57–59].
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It can be shown that the water table at the steady state 
does not depend on the number of users.

As a particular case, assumed that there exists only one 
user, no natural drainage (implying e = 0 ) and also no envi-
ronmental damage 

(
d1 = 0

)
 , hSO can be rewritten as:

which is the same expression as the one obtained by [51, 54].

Proposition 5  The amount of water extraction at the steady 
state for the farmers is

while the amount of water extraction at the steady state for 
the municipalities is

with the co-state variable � given by

Some comparative results at the steady state give the fol-
lowing corollary.

Corollary 3  We first consider a variation of the number 
municipalities, it can be noticed that, as both steady-state 
value of the water table and amount of water extraction from 
farmers do not depend on nm, we thus have �hSO∕�nm = 0 
and �wSO∕�nm = 0 . Moreover, 𝜕vSO∕𝜕nm < 0 . Under the 
assumption of ya = ym = y , the other impacts on the steady-
state water table are

ga gm ca
0

cm
0

d1 c1 R

hSO − − + + + − +

An increase in water demands reduces the water table 
while this is the opposite for higher fixed costs. An increase 
in the slope of the damage function implies a higher 
water table. The assumption ya = ym = y implies that 
the return flow coefficients are the same for the two uses 
( �a = �m = � ). It can be shown that under this assumption, 
the above assumptions A1a and A1b are fulfilled.

(31)
𝜒SO = 𝜌 −

√
𝜌2 + 4

(
c1
(
laya + lmym

)
(𝜌 + 2e) + e(𝜌 + e) − c2

1
lalm

(
ya − ym

)2)
< 0.

(32)hSO =
r

c1lay
+

r

�
−

b

c1
,

(33)wSO = max

(
−�laya + lab + lac1hSO

na
, 0

)
,

(34)vSO = max

(
−�lmym + lm� + lmc1hSO

nm
, 0

)
,

(35)� =
hSO

(
c1
(
yala + ymlm

)
+ e

)
− r + blaya + �lmym

lay
2
a
+ lmy

2
m

.

In the two-cell aquifer configuration, the program of the 
water agency becomes

under the dynamics

with the initial conditions h1(0) = h0
1
 , h2(0) = h0

2
 and 

h1, h2 ≥ 0.
The resolution of the water agency program gives the 

following proposition:

Proposition 6  The dynamics of the two-cell aquifer is given 
by

where h
SO

1
 and h

SO

2
 stand for the steady-state values of the 

water table, �SO
1

 and �SO
2

 are the two eigenvalues with nega-
tive real part of matrix J (defined in the Appendix), and P the 
associated matrix of eigenvectors.

The next section illustrates the dynamics obtained in the 
social optimum for the one-cell and the two-cell aquifer 
models.

4 � Numerical Illustrations and Management 
Policies

This section presents the calibration of the one-cell and two-
cell models, then the impacts of the different coefficients 
on the key variables of the model at the steady state and 
the management policies to be implemented to preserve the 
ecosystems. The management scenarios are numerically 
tested using data on the Pecos Basin. Data from [24] for 
the two-cell model and [18, 47] for the one-cell model are 
rather old but they are the only available ones. Concerning 
the economic calibration of the parameters, we follow [29] 
which have converted the 1970s dollar into the equivalent 
2012 value (multiplied by 5.49), and then into euros, with 
an exchange rate of 0.778€/$.

(36)

max
w≥0;v≥0�

∞

0

e
−�t

(
n
a

(
bw + dw

2 + fwh2

)
+ n

m(�v

+�v2 + �vh1
)
− d2 + d3h2

)
dt,

(37)ḣ1 =r1 − y1nmv − e0h1 + e0h2,

(38)ḣ2 =r2 − y2nw + e1h1 − e2h2,

(39)

(
hSO
1
(t)

hSO
2
(t)

)
= P−1

[
e�

SO
1

t 0

0 e�
SO
2

t

]
P

(
h0
1
− h

SO

1

h0
2
− h

SO

2

)
+

(
h
SO

1

h
SO

2

)
,
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4.1 � Parameter Values

Tables 1 and 2 provide the hydrogeological data used for 
the two-cell model

and the one-cell model.
As the values of hmax and hmin are the same as the con-

fined aquifer, it implies that the conductance coefficients kf  
and kn are the same. As explained in Subsection 2.2, con-
ditions ensuring the equivalence between the two models 
are not satisfied. The natural drainage is not negligible, 
the storage capacity of the two aquifers are significant, 
and the leakage coefficient between the two cells is not 
large. It means that the hydrologic properties of the two 
models are different. As pointed out in the introduction, 
this difference is important if we consider that the man-
ager wrongly thinks that the one-cell model he uses is 
a correct approximation of the two-cell model. It should 
be noted that when [18] use their representation of the 
two-cell model by a one-cell model, they also assume that 

the natural drainage was zero, implying the equivalence 
between the two models.

The Pecos Basin case study involves only one group 
of farmers pumping both in the shallow and the confined 
aquifer at different costs. As we introduce two groups of 
users, farmers and municipalities, we assume that each 
group has a specific water demand function and can only 
pump in one sub-aquifer (see Table 3). However to keep 
the same water extraction pressure, we assume that the 
sum of the two water demands is equal to the aggregate 
demand in [18], i.e., W = g − kpw with W = Wa + Vm , 
g = ga + gm , and k = la + lm . To simplify, we consider that 
the two water demand functions are the same but costs are 
different as in [24]. It can be checked that ca

0
∕ca

1
= hmax

2
 

and cm
0
∕cm

1
= hmax

1
 . However in the one-cell model, we also 

assume the same cost function for both users such that 
cm
0
= ca

0
 and cm

1
= ca

1
 . The discount factor is the same for 

all agents � = 0.2 [Year−1].
Concerning the calibration of the ecosystem damage 

function, we have to select some non-available param-
eters concerning the cost of the capture and the cost 
of environmental damages. Based on the above calibra-
tion R = R1 + R2 − E , hmax = hmax

2
= and hmin = hmin

2
 , the 

coefficients of the ecosystem damages in the one-cell 
and two-cell models are identical d0 = d2 and d1 = d3 . 
The literature provides large range of estimated flow 
values per hectare per year of ecosystem services for 
water-related ecosystems [60, 61]. In a different case 
study, [62] have considered for the coefficient � a value 
of 0.5€ per m 3 and for �  a value of 100000€ in [56]. 
However, such data are not available for this case study 
and another approach must be followed as shown in the 
next Subsection 4.3.

Table 1   Calibration of the two-cell aquifer model

Description two-cell Units Coeff Values Coeff Values

Aquifer area×storage coeff hm3∕m A1S1 101 A2S2 445
Evapotranspiration Mm3 E 117
Natural recharge Mm3 R1 296 R2 34
Max water level m hmax

1
1092 hmax

2
1092

Min water table m hmin

2
1018

Slope nat. drainage fct €/Mm3 kn 2.88
Leakage propor coeff k12 33.395

Table 2   Calibration of the one-cell aquifer model with AS = A1S1 + A2S2 
and R = R1 + R2 − E

Description one-cell Units Coeff Values

Aquifer area×storage coeff hm3∕m AS 546
Natural recharge Mm3 R 213
Max water level m hmax 1092
Min water table m hmin 1018

Table 3   Calibration of farmers 
and municipalities coefficients

Description Units Coeff Values Coeff Values

Intercept water demand fct €/Mm3 ga 290 gm 290
Slope water demand fct €/Mm3 la 0.0006284 lm 0.0006284
Nber of users - na 100 nm 100
Intercept pumping cost fct €/Mm3 ca

0
432910 cm

0
345166

Slope pumping cost fct €/Mm3m ca
1

397 cm
1

316
Return flow coefficient - �a 0.27 �m 0.27

Table 4   One-cell comparative 
results

gm lm cm
0

c1 d1

h − + + − +

w − + + + −
v + − − + −

Q + − − + −
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4.2 � Steady‑state Comparative Results

As shown in Corollary 3, the water table and the amount of 
water extraction by the users do not depend on the number 
of users. It means that when the number of players varies, 
the global amount of water extraction for each group remains 
the same but more users inside a group mean less water for 
everybody. In the one-cell aquifer and at the steady state, 
Table 4 shows the impacts of a shift on the coefficients on 
the variable of interest. An increase of the municipal water 
demand gm shows that more water is allocated to munici-
palities and less to farmers. However, the net impact on the 
aggregate extraction is positive and implies a lower water 
table. A rise in the slope of the water demand function lm 
or in the fixed cost cm

0
 implies an increase in the water table 

due to a lower water extraction from municipalities. It can be 
shown that even if water extraction for the farmers increases, 
the overall impact on the total of extracted water remains 
negative. As we assume that both groups of users have the 
same cost coefficient c1 , the impact of a rise in c1 decreases 
the marginal pumping cost implying higher water extrac-
tion for both users at the expense of a fall in the water table. 
Lastly, a rise in d1 means less water for users and a higher 
water table.

Results also show that the impact of a rise in the natural 
recharge R depends on the presence of the environmental 
externality in the welfare function of the water agency. We 
refer to notation SO for the social optimum when the pump-
ing cost externality is internalized but not the environmental 
externality ( d1 = 0 ) and notation SOE when the environmen-
tal externality is also taken into account ( d1 > 0 ). Table 5 
shows that a rise in the natural recharge R always increases 

the water table in the two configurations but while water 
pumping rises in the SO case, it decreases in the SOE case. 
It shows the impact of the environmental externality since 
a rise of the natural recharge also means a higher natural 
drainage through the higher conductance coefficient kf  and 
it also increases the weight of the environmental externality 
given by d1 in the welfare function of the water agency.

In the two-cell aquifer, Table 6 gives the changes on 
the main parameters on the variable of interest. A positive 
shift on the municipalities’ water demand ( gm ) implies a 
transfer of water from farmers to municipalities. As total 
water extraction increases, the water tables of the two aqui-
fers decrease. An increase in the slope of the municipali-
ties’ water demand ( lm ) or a rise in the fixed pumping cost 
implies a transfer of water from municipalities to farmers. 
The net impact on water extraction is negative and implies 
a rise of the water tables. When the slope of the pumping 
cost function ( cm

1
 ) increases, it reduces the marginal cost of 

pumping and increases water extraction for municipalities. 
The decrease in farmers extraction is not enough to offset the 
municipalities’ increase, leading to a higher total extraction 
and a fall of the water tables.

A full analysis of these comparative results after a 10% 
shift in several parameters is provided in Tables 12 and 13 
in Appendix 7.8.

4.3 � Water Management Policies 
for the Preservation of the Ecosystem

As conditions ensuring that the two models are not equiva-
lent from a hydrological point of view, we now assume that 
the water agency uses the one-cell model as if it was the cor-
rect model and not the two-cell one to determine his optimal 
management strategy. In particular, the water agency aims 
at ensuring positive environmental flows and preserving the 
ecosystem. We know that such an objective requires to deter-
mine how much the society has to value in monetary terms 
the ecosystem services sustained by the groundwater. In our 

Table 5   Impact of a rise of the 
natural recharge R in the one-
cell model

R h w v Q

SO case + + + +

SOE case + − − −

Table 6   Two-cell comparative 
results

gm lm cm
0

cm
1

d3

h1 − + + − +

h2 − + + − +

w − + + − −
v + − − + −

Q + − − + −

Table 7   Calibration of 
Ecosystem damage costs in 
the one-cell model ensuring 
h ≥ hmin at the steady state

Costs of Units Coeff Values Values Values Values

Capture €/m3 � 1.276 1.259 1.242 1.224
Ecosystem damage €/m � 0 50000 100000 150000

Table 8   Steady-state values in the one-cell model using the values � 
and � from Table 7

h w = v W = V Q

SO 964.246 2.518 251.865 503.731
SOE 1018 1.458 145.896 291.792
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model, the value of the marginal ecosystem damage is given 
by the weight of the environmental externalities, denoted by 
d1 and d3 in Eqs. (26) and (27) and associated coefficients � 
and � . Due to the lack of data, we first have determined the 
values of theses coefficients in such a way that the steady-
state water table in the one-cell aquifer remains above the 
critical threshold h ≥ hmin (see Table 7).

Table 8 gives the steady-state values in the SO configu-
ration (when d1 = 0 ) and SOE one (when d1 > 0 ) where Q 

Table 9   Steady-state values in the two-cell model with identical costs 
(case a) and heterogenous cost (case b)

h1 h2 w v Q

SO (a) 967.562 964.205 2.519 2.519 503.891
SO (b) 965.778 962.559 2.521 2.582 510.380
SOE (a) 1022.22 1016.68 1.445 1.523 296.953
SOE (b) 1021.25 1015.79 1.446 1.557 300.479
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Fig. 6   Trajectories of the water table (a) and total water extraction (b) in the one-cell aquifer. SO in double dot (black) and SOE in solid (green)

0 200100 30005205105

1 000

1 100

980

1 020

1 040

1 060

1 080

990

1 010

1 030

1 050

1 070

1 090

Time

h1

h1_SO
h1_SOE

(a) Confined aquifer h1(t)

0 200100 30005205105

1 000

1 100

980

1 020

1 040

1 060

1 080

990

1 010

1 030

1 050

1 070

1 090

Time

h2

h2_SO
h2_SOE

(b) Shallow aquifer h2(t)

Fig. 7   Trajectories of the water table for the confined aquifer (a) and the shallow aquifer (b). SO in double dot (black) and SOE in solid (green)
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stands for the sum of the extraction of the two groups of 
users Wa and Vm:

Based on Eq. (30), it is immediate to see that hSOE > hSO 
when d1 > 0 and as expected h = hmin = 1018.

Then, based on these value for coefficients � and � , our 
objective is to see if the condition h2 ≥ hmin

2
 is satisfied in 

the two-cell aquifer model. Table 9 shows that the water 
table h2 at the steady state remains below the critical value 
hmin

2
 whether we assume or not cost heterogeneity between 

farmers and municipalities. Case (a) refers to identical cost 
coefficients ( ca

0
= cm

0
 and ca

1
= cm

1
 ) while case (b) refers to 

heterogenous cost parameters ( ca
0
≠ cm

0
 and ca

1
≠ cm

1
)

The trajectories of the water table and the pumping for 
both uses in the two configurations, SO and SOE, are given 
in Fig. 6 in the one-cell model and in Fig. 7 in the two-
cell model. We also assume that the initial conditions for 
the water tables are their maximum values. In both models, 
the number of users in each group is identical and given by 
na = nm = 100.

Results show the differences in the trajectories of the 
water table in the one-cell and two-cell models (both the 
confined and the shallow aquifers). The environmental 
externality is measured by the difference between SO and 
SOE. As explained above, the values of the costs of capture 

and ecosystem damages have been chosen to maintain the 
steady-state water table in the one-cell model at its critical 
value hmin in the SOE configuration. A higher weight of the 
environmental externality implies a higher water table and 
a lower amount of water extraction. Our results show that 
such values are not enough to ensure this condition in the 
two-cell model. With the same values of the costs of capture 
and damages, the water table of the shallow aquifer at the 
steady state is lower than its critical value h2 < hmin

2
 meaning 

that the river is fed by the shallow aquifer in the SOE case. 
This result holds when the cost functions of the two groups 
of users are identical and adding cost heterogeneity increases 
the difference between h2 and hmin

2
 , from 1.3 to 2.2m at the 

steady state. Such a difference relies on the hydraulic con-
ductivities which impact the design of groundwater man-
agement. In the one-cell model, farmers and municipalities’ 
water extractions impact symmetrically the water table of 
the aquifer while in the two-cell model the impact of water 
extraction of municipalities on the shallow aquifer is indi-
rect. It results a higher water extraction for municipali-
ties ( 1.523Mm3 and 1.557Mm3 instead of 1.458Mm3 ) and a 
slightly lower water pumping for irrigation ( 1.445Mm3 and 
1.446Mm3 instead of 1.458Mm3 ) in the long term. However 
during the 300 simulation period, Fig. 8 shows that water 
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(a) Municipalities water extraction
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(b) Irrigation water extraction

Fig. 8   Optimal trajectories of water extraction for municipalities (a) and irrigation (b) in the one-cell aquifer SOE case in solid (black), in the 
two-cell aquifer SOE case in dash (blue) when users differ in cost, and in dot (red) when users are identical

Table 10   Calibration of ecosystem damage costs in the two-cell model ensuring at the steady state h2 ≥ hmin

2
 in the SOE case

Costs of Units Coeff Values Values Values Values

Capture €/m3 � 1.309 1.291 1.274 1.256
Ecosystem damage €/m � 0 50000 100000 150000
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extraction in the SOE case for both uses is higher in the two-
cell model compared to the one-cell model.

In the two-cell model, it suggests that a higher monetary 
value is needed to ensure the preservation of ecosystem ser-
vices sustained by environmental flows. It implies that if 
the water agency uses the one-cell model, which is a wrong 
simplification of the two-cell model, the value of environ-
mental externality will be underestimated in the design of 
optimal policies in the two-cell model, implying too much 
water pumping for farmers and municipalities. To achieve 
the objective of positive environmental flows h2 ≥ hmin

2
 in the 

two-cell aquifer, the values of coefficients � and � have to be 
respectively higher as shown in the next Table 10.

Now we look at the limit case when k12 becomes large 
( k12 → ∞ ). As shown in Subsection 2.2, such a condition 
ensures that the one-cell model behaves like the two-cell 
model. Results in Table 11 show that for the set of environ-
mental damage coefficients defined in Eq. (7) the water table 
tends to its critical value hmin in the SOE case.

Our results show the importance of taking into account 
the true hydrogeological model, in this case the two-cell 
model, in the design of environmental policies. When the 
one-cell model is a wrong approximation of the true model, 
total water pumping appears too excessive to preserve posi-
tive environmental flows.

5 � Conclusion

The paper aims at studying how the introduction of hydraulic 
conductivities in a stylized two-cell hydro-economic model 
impacts groundwater sustainability when different groups of 
users, farmers, municipalities, and ecosystems are in com-
petition for the resource. The social optimum water policies 
have been analyzed when environmental externalities are 
internalized by a water agency.

Our result shows that the two-cell model as initially 
described by [24] could not be approximated by a one-cell 
model due to the hydrogeological system of the Pecos Basin. 
This is of particular importance when an environmental exter-
nality is added implying that the aquifer is open with natural 
drainage [40]. It should be noted that when [18] use the one-
cell model, they assume a closed aquifer with no natural drain-
age. Results show that if the water agency uses the one-cell 
model as if it was a correct representation of the initial two-cell 

model for the design of his water policies, his objectives in 
terms of preservation of ecosystem will not be achieved. In 
particular, we show that the value of the weight of the environ-
mental externality which ensures the preservation of positive 
environmental flows in the one-cell model is too low compared 
to what was required for the two-cell model. It means that the 
water agency allocated too much water for farmers and munici-
palities at the expense of the ecosystem. It suggests that the 
use of the one-cell bathtub aquifer model even when natural 
drainage is explicitly taking into account may appear too sim-
ple to deal with groundwater management and sustainability. 
It justifies the need to consider hydraulic conductivities and 
multi-cell models.

Overall, our methodology can be used to handle more com-
plex systems and different hydraulic configurations. Potential 
extensions include the analysis of switching regimes in the 
dynamics of the water table. We have explicitly assumed that 
when the water table of the shallow aquifer was below a criti-
cal level, water flows from the river to the aquifer. However, 
the case of a dry river was excluded. Relaxing this assumption 
will be addressed in future research endeavors.

Table 11   Convergence of the two-cell model to the one-cell model 
when k12 → ∞

k12 → ∞ h w = v Q

SO 964.246 2.5186 503.731
SOE 1017.99 1.4589 291.792
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Appendix

Proof of Proposition 1

Assuming that the natural drainage is negligible, substitute 
kn = ��n with 0 < 𝜀 ≪ 1 in system (5) gives

This model is a regular perturbation of the initial system 
(5) with Wn = 0 . Defined the weighted water table denoted 
by h as h =

A1S1h1+A2S2h2

AS
 with AS = A1S1 + A2S2 , the above 

system can be rewritten as follows, after having substitute kn 
by kn = ��n

{
A1S1ḣ1 = R1 −

(
1 − 𝜇m

)
Vm − D1→2,

A2S2ḣ2 = R2 − E −
(
1 − 𝜇a

)
Wa + D1→2 − 𝜀𝜅n(h2 − hmin

2
).
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with ya , ym defined in Eq. (4).
Dynamics

is a regular perturbation of Eq. (40). Thus, the trajectories 
of System (11) and the dynamics of the two-cell model are 
very close when kn is small.

Proof of Proposition 2

Let us consider the following two-time scale dynamics written 
in slow time t where notation ẋ stands for d

dt
(x(t)).

with initial condition (h0
1
, h0

2
) . System (41) has two limit 

systems. At fast time � , defined as t = �� , system (41) is a 
regular perturbation of the unperturbed system

At fast time � , h2 is constant, equal to h0
2
 , and h1 varies 

quickly and is approximated by the solution of the boundary 
layer

The slow manifold is defined as

is attractive and thus the theorem of Tikhonov [52] can be 
applied. Let us denote H1(h2) =

R1−(1−�m)Vm+k12h2

k12
.

Letting (h0
1
, h0

2
) be an initial condition, as the slow manifold 

is attractive, according to Tikhonov’s theorem, the solution 
of system (41) quickly converges to the neighborhood of the 
slow manifold according to Tikhonov’s theorem. And then, 
on the slow manifold, the slow motion takes place. The slow 
motion is given by

Substituting H1(h2) gives Eq. (14). Then, Proposition 2 
holds.

(40)ḣ =
R1 + R2 − E

AS
− ymVm − yaWa − 𝜀𝜅n

(
h2 − hmin

)
,

ḣ =
R

AS
− yaWa − ymVm,

(41)

{
𝜀A2S2ḣ1 = R1 −

(
1 − 𝜇m

)
Vm − k12

(
h1 − h2

)
,

A2S2ḣ2 = R2 − E −
(
1 − 𝜇a

)
Wa + k12

(
h1 − h2

)
− kn(h2 − hmin

2
).

{
dh1

d�
=

R1−(1−�m)Vm−k12(h1−h2)
A2S2

,

dh2

d�
= 0.

dh1

d�
=

R1 −
(
1 − �m

)
Vm − k12

(
h1 − h0

2

)
A2S2

.

L =

{
(h1, h2) ∈ ℝ

2+ ∣ h1 =
R1 −

(
1 − �m

)
Vm + k12h2

k12

}
,

A2S2ḣ2 = R2 − E −
(
1 − 𝜇a

)
Wa + k12

(
H1(h2) − h2

)
− kn(h2 − hmin

2
).

Proof of Proposition 3

Let us consider the following slow-fast dynamical system with 
initial condition 

(
h0, h2(0)

)
.

At fast time � defined as t = �� , the dynamical system is 
equivalent to the unperturbed dynamics

Slow manifold is thus defined as

As the slow manifold is attractive, Tikhonov’s theorem 
applies, and thus a trajectory with initial condition 

(
h0, h2(0)

)
 

quickly converges in the neighborhood of the slow manifold, 
and the dynamics on the slow manifold, where h2 = h , the 
dynamics is then given by Eq. (15) in the main text.

Proof of Proposition 4

The Hamiltonian relative to the manager optimization prob-
lem is given by

where � stands for the co-state variable. The optimality con-
ditions are

together with the transversality condition lim
t→∞ e−�th(t)

�(t) = 0.
We first assume that the control constraints are not bind-

ing. Substitute the optimal expressions of the water extrac-
tions in the dynamics of the aquifer yields

(42)

⎧⎪⎨⎪⎩

AS
dh

dt
= R

1
−
�
1 − �

m

�
V
m
+ R

2
− E −

�
1 − �

a

�
W

a
− k

n
(h

2
− h

min

2
),

�A
2
S
2

dh2

dt
= �R

2
− E − �

�
1 − �

a

�
W

a
+

AS

A1S1

(h − h
2
) − �k

n
(h

2
− h

min

2
).

{
dh

d�
= 0,

A2S2
dh2

d�
=

AS

A1S1
(h − h2).

M =

{
(h1, h2) ∈ ℝ

2+ ∣ h2 =
A1S1h1 + A2S2h2

AS

}
.

H(h1, h2,w, v, �, �) =na
(
bw + dw2 + fwh2

)

+ nm
(
�v + �v2 + �vh1

)
− d2 + d3h2

+ �
(
r1 − y1Vm − e0h1 + e0h2

)
+ �

(
r2 − y2Wa + e1h1 − e2h2

)
.

w =

{ 𝜆ya−b−c1h

2d
if 𝜆ya − b − c1h ≤ 0,

0 if 𝜆ya − b − c1h > 0,

v =

{ 𝜆ym−𝛽−c1h

2𝛿
if 𝜆ym − 𝛽 − c1h ≤ 0,

0 if 𝜆ym − 𝛽 − c1h > 0,

𝜆̇ = − nac1w − nmc1v − d1 + 𝜆(e + 𝜌),
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At the steady state, we obtain

The steady-state water table is positive hSO > 0 when the 
numerator and denominator are positive, under Assumption 
A1a ∶ r

(
� + e + c

1

(
laya + lmym

))
−
(
blaya + �lmym

)
(� + e)

−c
1
lalm

(
ya − ym

)(
bym − 𝛽ya

)
> 0 and Assumption A1b ∶ (

e + c
1

(
laya + lmym

))
(� + e) + ec

1

(
laya + lmym

)
− c2

1
lalm(

y
a
− y

m

)2
> 0.

The steady-state value of the adjoint variable � is given by:

The dynamics of linear system (43) is given by the eigen-
values of Jacobian matrix MSO

Let � = −c
1

(
laya + lmym

)
(� + 2e) − e(� + e) + c2

1
lalm

(
ya − ym

)2 be  
the determinant of the Jacobian matrix which is negative 
according to Assumption A1b. The characteristic polynom 
Δ(X) is given by Δ(X) = X2 − �X + � . As 𝜋 < 0, the discri-
minant is positive; thus, there exist two real roots solution of 
equation Δ(X) = 0. These eigenvalues are explicitly given by 
� = � ±

√
�2 − 4� but the one which satisfies the transversal-

ity condition is

Proof of Proposition 5

The optimum, at the steady state, gives the amount of water 
extraction for farmers

(43)

⎧⎪⎨⎪⎩

ḣ = h
�
c
1

�
naya

2d
+

nmym

2𝛿

�
− e

�
+ r +

�
bnaya

2d
+

𝛽nmym

2𝛿

�
− 𝜆

�
nay

2

a

2d
+

nmy
2

m

2𝛿

�
,

𝜆̇ = hc2
1

�
na

2d
+

nm

2𝛿

�
− d

1
+ c

1

�
𝛽nm

2𝛿
+

bna

2d

�
+ 𝜆

�
𝜌 + e − c

1

�
naya

2d
+

nmym

2𝛿

��
.

(44)

hSO =

r −
(blaya+�lmym)(�+e)
�+e+c1(laya+lmym)

+ d1
lay

2
a
+lmy

2
m

�+e+c1(laya+lmym)
−

c1lalm(ya−ym)(bym−�ya)
�+e+c1(laya+lmym)

e +
c1(laya+lmym)(�+e)
�+e+c1(laya+lmym)

−
c2
1
lalm(ya−ym)

2

�+e+c1(laya+lmym)

.

� =
hSO

(
c1

(
naya

2d
+

nmym

2�

)
− e

)
+ r +

bnaya

2d
+

�nmym

2�

nay
2
a

2d
+

nmy
2
m

2�

.

MSO =

[
−c1laya − c1lmym − e lay

2
a
+ lmy

2
m

−c2
1

(
la + lm

)
� + e + c1laya + c1lmym

]
.

�SO = � −

√
�2 + 4

(
c
1

(
laya + lmym

)
(� + 2e) + e(� + e) − c2

1
lalm

(
ya − ym

)2)
.

with

which can be rewritten as

and for the municipalities

Proof of Corollary 3

From the expression of hSO given in Eq. (30), it is immediate to 
see that hSO is independent of nm and na. Using the expressions 
of � in Eq. (35) and wSO in Eq. (33), wSO is also independent of 
nm. Using the expression of vSO in Eq. (34), a simple compu-
tation shows that �vSOnm

= −1 . To simplify the expressions, we 
assume ya = ym = y.

The derivatives of hSO with respect to coefficients b and 
� are

Based on the expressions of b and � , we get 𝜕hSO
𝜕ga

< 0 , 
𝜕hSO

𝜕gm
< 0 , 𝜕hSO

𝜕ca
0

< 0 and 𝜕hSO
𝜕cm

0

< 0 . We also have 𝜕hSO
𝜕d1

> 0.

We now consider the impact of c1. Using the expression 
for hSO

we have

wSO =
�ya − b − c1hSO

2d
,

� =
hSO

(
c1

(
naya

2d
+

nmym

2�

)
− e

)
+ r +

bnaya

2d
+

�nmym

2�

nay
2
a

2d
+

nmy
2
m

2�

,

wSO =
rya +

�nmymya

2�
− b

nmy
2

m

2�
+ ya

(
c
1

(
naya

2d
+

nmym

2�

)
− e − c

1

(
nay

2

a

2d
+

nmy
2

m

2�

))
hSO

2d
(

nay
2
a

2d
+

nmy
2
m

2�

) ,

vSO =
rym +

bnayaym

2d
− �

nay
2

a

2d
+ ym

(
c
1

(
naya

2d
+

nmym

2�

)
− e − c

1

(
nay

2

a

2d
+

nmy
2

m

2�

))
hSO

2�

(
nay

2
a

2d
+

nmy
2
m

2�

) ,

𝜕hSO

𝜕b
=

−
yla(𝜌+e)

𝜌+e+c1y(la+lm)

e +
c1y(la+lm)(𝜌+e)
𝜌+e+c1y(la+lm)

< 0,
𝜕hSO

𝜕𝛽
=

−
ylm(𝜌+e)

𝜌+e+c1y(la+lm)

e +
c1y(la+lm)(𝜌+e)
𝜌+e+c1y(la+lm)

< 0.

hSO =
r
(
� + e + c1y

(
la + lm

))
− y

(
bla + �lm

)
(� + e) + d1y

2
(
la + lm

)

e(� + e) + c1y
(
la + lm

)
(� + 2e)

,

�hSO

�c1
=

ry
(
la + lm

)

e(� + e) + c1y
(
la + lm

)
(� + 2e)

−
y
(
la + lm

)
(� + 2e)

[
r
(
� + e + c1y

(
la + lm

))
− y

(
bla + �lm

)
(� + e) + d1y

2
(
la + lm

)]
[
e(� + e) + c1y

(
la + lm

)
(� + 2e)

]2 .
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Thus the sign of �hSO
�c1

 is the same as the sign of the following 
term

which is negative as b and 𝛽 < 0.

Proof of Proposition 6

The Hamiltonian of the system is defined as

The proof is decomposed in several steps: In step 1, we 
derive optimality conditions. Step 2 is devoted to the com-
putation of the long run optimal solution ( h

SO

1
, h

SO

2
 ). In step 

3, we prove the existence of saddle-path configuration where 
the stable manifold is two dimensional. In step 4, we write the 
explicit dynamics of the solution, using Riccati decomposition.

Step 1: Optimality conditions are

and

The optimality conditions together with the water table 
dynamics give

Step 2: Water tables 
(
h
SO

1
, h

SO

2

)
 at the steady state are 

given as solutions of the following linear system of 2 
equations

y
(
la + lm

)[ (� + 2e)y
(
bla + �lm

)
(� + e) − r(� + e)2

−(� + 2e)d1y
(
la + lm

)
]
,

H(h
1
, h

2
,w, v, �, �) =na

(
bw + dw2 + fwh

2

)

+ nm
(
�v + �v2 + �vh

1

)
− d

2
+ d

3
h
2

+ �
(
r
1
− y

1
Vm − e

0
h
1
+ e

0
h
2

)
+ �

(
r
2
− y

2
Wa + e

1
h
1
− e

2
h
2

)
.

w =max

(
0,

�y2 − b − f h2

2d

)
,

v =max

(
0,

�y1 − � − �h1

2�

)
,

𝜆̇ = − nm𝛾v − e1𝜂 +
(
𝜌 + e0

)
𝜆,

𝜂̇ = − na f w − e0𝜆 − d3 +
(
𝜌 + e2

)
𝜂.

𝜆̇ =
(
𝜌 + e0 −

nm𝛾y1

2𝛿

)
𝜆 − e1𝜂 +

nm𝛾
2

2𝛿
h1 +

nm𝛾𝛽

2𝛿
,

𝜂̇ = − e0𝜆 +

(
𝜌 + e2 −

na f y2

2d

)
𝜂 +

na f
2

2d
h2 +

na f b

2d
− d3,

ḣ1 = −
y2
1
nm

2𝛿
𝜆 +

(𝛾y1nm
2𝛿

− e0

)
h1 + e0h2 + r1 +

y1nm𝛽

2𝛿
,

ḣ2 = −
y2
2
na

2d
𝜂 + e1h1 +

(
f y2na

2d
− e2

)
h2 + r2 +

by2na

2d
.

with

Step 3: The Jacobian matrix derived from the optimality 
conditions dynamics is

Characteristic polynom is

where M2 and M3 are the sum of all diagonal second- and 
third-order minor of J. Properties of these kind of Jacobian 
matrix are well known [63], and it can be easily checked that 
−M3 + �M2 + �3 = 0.

Thus, letting K = M2 − �2, then solutions of characteristic 
equation Δ(X) = 0 are

Computation of K gives

Moreover, the determinant is

(45)

nmy1

2�
�

[(
� − b2

)nm�y1
2�

− A
]
+

nmy
2

1

2�

na f

2d
be1 − d3e1

nmy
2

1

2�
− r1A

=

(
a1A −

(
� − b2

)(nm�y1
2�

)2
)
h1 +

(
e0A − e1

nmy
2

1

2�

na f
2

2d

)
h2,

(46)

nay2

2d
b

[(
� − a

1

) na f y2
2d

− A

]
+

nay
2

2

2d

nm�

2�
�e

0
− d

3

(
� − a

1

) nay22
2d

− r
2
A

=

(
e
1
A − e

0

nay
2

2

2d

nm�
2

2�

)
h
1
+

(
b
2
A −

(
� − a

1

)( na f y2

2d

)2
)
h
2
,

A = e1e0 −
(
� + e0 −

y1nm�

2�

)(
� + e2 −

na fy2

2d

)
.

J =

⎡⎢⎢⎢⎢⎢⎣

�y1nm

2�
− e0 e0 −

y2
1
nm

2�
0

e1
fy2na

2d
− e2 0 −

y2
2
na

2d
nm�

2

2�
0 � + e0 −

nm�y1

2�
− e1

0
na f

2

2d
− e0 � + e2 −

na f y2

2d

⎤⎥⎥⎥⎥⎥⎦

.

Δ(X) = X4 − 2�X3 +M2X
2 −M3X + det (J),

�1,2,3,4 =
�

2
±

��
�

2

�2

−
K

2
±

1

2

√
K2 − 4 det (J).

K =
𝛾y1nm

𝛿

(
e0 +

𝜌

2

)
+

f y2na

d

(
e2 +

𝜌

2

)
− 𝜌

(
e0 + e2

)

− e2
0
− 2e0e1 − e2

2
< 0.

det (J) =�2
(
e0
(
e2 − e1

)
−

f y2na

2d
e0 −

�y1nm

2�
e2 +

f �y1y2nanm

4d�

)

+ �

(
e0
(
e2 + e0

)(
e2 − e1

)
−

�y1nm

2�
e2
2
−

f y2na

2d
e2
0

−
(

�y1nm

2�
+

f y2na

2d

)
e0
(
2e2 − e1

)
+

f �y1y2nanm

2d�

(
e0 + e2

)
)

+ e2
0

(
e2 − e1

)2
− e0

(
f y2na

d
e0 +

�y1nm

�
e2

)(
e2 − e1

)

+
nanm

4d�

(
4f �y1y2e0e2 −

(
f y1e1 + �y2e0

)2)
.
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All the terms are positive except the last term. Assuming (
4f 𝛾y1y2e0e2 −

(
f y1e1 + 𝛾y2e0

)2)
> 0  e n s u re s  t h a t 

det (J) > 0 and as K < 0 , there exists two roots with negative 
real part, denoted by

Step 4: We now turn to the explicit solution of the optimal 
dynamics

The optimality conditions together with the water table 
dynamics give

Letting H� =
[
h1, h2

]� and Λ� = [�, �]� , the system of the 
optimal conditions and the water table dynamics can be rewrit-
ten as

with A =

[
�ymnm

2�
− e0 e0

e1
fyana

2d
− e2

]
 , F =

⎡⎢⎢⎣
� + e0 −

�nmym

2�
− e1

−e0 � + e2 −
fnaya

2d

⎤⎥⎥⎦
 , 

G =

[
nm�

2

2�
0

0
na f

2

2d

]
 , K =

[
��nm

2�
bfna

2d
− d3

]
 , V =

[
−

y2
m
nm

2�
0

0 −
y2
a
na

2d

]
 , 

R =

[
r1 +

�ymnm

2�

r2 +
byana

2d

]
.

�SO
1,2

=
�

2
±

��
�

2

�2

−
K

2
±

1

2

√
K2 − 4 det (J).

𝜆̇ =
(
𝜌 + e0 −

nm𝛾ym

2𝛿

)
𝜆 − e1𝜂 +

nm𝛾
2

2𝛿
h1 +

nm𝛾𝛽

2𝛿
,

𝜂̇ = − e0𝜆 +

(
𝜌 + e2 −

na f ya

2d

)
𝜂 +

na f
2

2d
h2 +

na f b

2d
− d3,

ḣ1 = −
y2
m
nm

2𝛿
𝜆 +

(𝛾ymnm
2𝛿

− e0

)
h1 + e0h2 + r1 +

ymnm𝛽

2𝛿
,

ḣ2 = −
y2
a
na

2d
𝜂 + e1h1 +

(
fyana

2d
− e2

)
h2 + r2 +

byana

2d
.

Λ̇ =FΛ + GH + K,

Ḣ =AH + VΛ + R,

We look for solutions such that Λ = SH +W. Differentiat-
ing Λ yields

Since we also have

it implies

The coefficient of matrix S =

[
s1 s2
s3 s4

]
 satisfies the follow-

ing system of 4 equations

where it can be easily seen that s3 = s4, thus 
(
s1, s2, s3

)
 solves

Λ̇ =SḢ,

=S(A + VS)H + SVW + SR.

Λ̇ = (FS + G)H + FW + K,

FS + G = S(A + VS).

0 =
nmy

2
m

2�
s2
1
+
(
2e0 + � −

�nmym

�

)
s1

+

(
�2nm

2�
+

�nay
2
a

2d
s2s3 − e1

(
s2 + s3

))
,

0 =

(
� + e2 −

fnaya

2d
+

�nay
2
a

2d
s4 +

nmy
2
m

2�
s1 −

�nmym

2�
+ e0

)

s3 −
(
e0s1 + e1s4

)
,

0 =

(
e0 + � + e2 −

�nmym

2�
−

fnaya

2d
+

�nay
2
a

2d
s4 +

nmy
2
m

2�
s1

)

s2 −
(
e0s1 + e1s4

)
,

0 =
�nay

2
a

2d
s2
4
+

(
� + 2e2 −

fnaya

d

)
s4

+

(
f 2na

2d
+

nmy
2
m

2�
s2s3 − e0

(
s2 + s3

))
,

Table 12   10% shift of the 
parameters with na = nm = 100

gm lm cm
0

c1 R

hSO 957.866 (-0.661) 965.079 (+0.086) 970.230 (+0.62) 954.090 (-1.053) 974.634 (+1.077)

hSOE 999.936 (-0.626) 1021.14 (+0.309) 1023.98 (+0.58) 1007.13 (-1.067) 1027.84 (+0.966)

wSO 2.503 (-0.714) 2.521 (+.0997) 2.536 (+0.716) 2.718 (+7.949) 2.545 (+1.055)
wSOE 1.428 (-1.244) 1.468 (+0.650) 1.477 (+1,236) 1.673 (+14,67) 1.391 (-4,634)
vSO 2.854 (+10.5) 2.483 (-1.389) 2.264 (-10.08) 2.718 (+7.949) 2.545 (+1.055)
vSOE 1.830 (+17.5) 1.325 (-9.161) 1.204 (-17.41) 1.673 (+14,67) 1.391 (-4,634)

QSO
528.885 (+4.993) 500.446 (-0.652) 480.136 (-4.68) 543.776 (+7.949) 509.049 (+1.055)

QSOE
363.003 (+8.620) 279.375 (-4.225) 268.196 (-8.08) 334.611 (+14.67) 278.268 (-4.634)
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Thus

Let be M = A + VS equal to

M =

[
−

nmy
2
m

2�
s1 +

�nmym

2�
− e0 e0 −

nmy
2
m

2�
s2

e1 −
�nay

2
a

2d
s3 −

�nay
2
a

2d
s4 +

fnaya

2d
− e2

]

�SO
1

 and �SO
2

 (eigenvalues of J computed in step 3 with 
negative real part) are the eigenvalues of the eigenvalues 
of M. Thus, the eigenvectors ui, i = 1, 2 , computed as

are  respect ive ly  u1 =

⎛⎜⎜⎝

1

−
e0−

nmy2m

2�
s2

−
nmy2m

2�
s1+

�nmym

2�
−e0−�

SO
1

⎞⎟⎟⎠
 and 

u2 =

⎛⎜⎜⎝
−

−
nmy2m

2�
s1+

�nmym

2�
−e0−�

SO
2

e0−
nmy2m

2�
s2

1

⎞⎟⎟⎠
.

Thus,

0 =
nmy

2
m

2�
s2
1
+
(
2e0 + � −

�nmym

�

)

s1 +

(
�2nm

2�
+

�nay
2
a

2d
s2
2
− 2e1s2

)
,

0 =

(
� + e2 −

fnaya

2d
+

�nay
2
a

2d
s4 +

nmy
2
m

2�
s1 −

�nmym

2�
+ e0

)

s2 −
(
e0s1 + e1s4

)
,

0 =
�nay

2
a

2d
s2
4
+

(
� + 2e2 −

fnaya

d

)

s4 +

(
f 2na

2d
+

nmy
2
m

2�
s2
2
− 2e0s2

)
.

Ḣ = (A + VS)H + VW + R.

Mui = �SO
i
ui

with P = [u1, u2].

Steady‑state Comparative Results

Based on the steady-state values in the one-cell and two-
cell model which correspond to our benchmark case, we 
analyze the impact of a 10% shift in several parameters 
concerning the number of players, the water demand func-
tion, and the pumping cost function.

Table 12 gives the impact of a shift of 10% on the dif-
ferent coefficients at the steady-state variables for the 
one-cell model. The first number is the absolute change 
and the second number is in % with respect to the ini-
tial situation. For instance, an increase of the municipal 
water demand gm by 10% (from gm = 290 to gm = 319 ) 
shows that the water consumption for the municipalities 
increases by 10.75% (or +27.07Mm3 ) while the farmers’ 
consumption decreases by 0.661% (or -1.92Mm3 ) in the 
SO configuration.

Table 13 gives the impact of a shift of 10% on the dif-
ferent coefficients at the steady-state variables for the two-
cell model. The first number is the absolute change and the 
second number is in % with respect to the initial situation 
with cost heterogeneity.

M = P−1

[
�SO
1

0

0 �SO
2

]
P,

Table 13   Ten percent shift 
of the parameters with 
na = nm = 100

gm lm cm
0

cm
1

h
SO

1

958.740 (-0.728) 966.545 (+0.079) 971.042 (+0.545) 961.297 (-0.464)

h
SOE

1

1014.21 (-0.689) 1024.48 (+0.317) 1026.51 (+0.515) 1016.44 (-0.470)

h
SO

2

956.117 (-0.669) 963.261 (+0.072) 967.378 (+0.500) 958.463 (-0.425)

h
SOE

2

1009.35 (-0.634) 1018.76 (+0.291) 1020.61 (+0.474) 1011.40 (-0.432)

wSO 2.503 (+10.55) 2.523 (+0.080) 2.535 (+0.550) 2.507 (-0.576)
wSOE 1.830 (+17.49) 1.455 (+0.589) 1.460 (+0.958) 1.432 (-0.994)
vSO 2.854 (-0.735) 2.552 (-1.149) 2.378 (-7.895) 2.758 (+6.818)
vSOE 1.428 (-1.281) 1.432 (-8.048) 1.354 (-13.08) 1.745 (+12.04)

QSO
535.783 (+4.97) 507.613 (-0.54) 491.381 (-3.72) 526.533 (+3.16)

QSOE
325.882 (+8.45) 288.794 (-3.88) 281.480 (-6.32) 317.800 (+5.76)
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